PROXXON

Geräte mit Charakter

PROXXON-Drehmaschinensystem SD 300 Bedienen, Warten, Tips

Wir bitten Sie,

vor der Inbetriebnahme Ihrer neuen Präzisionsdrehmaschine SD 300 diese Bedienungsanleitung und die Hinweise sorgfältig zu studieren.
Damit werden thnen alle Funktionen der Maschine umfassend erläutert, und Sie sollen Sicherheit im Gebrauch erlangen.
Sie haben eine Drehmaschine erworben, die von Fachleuten, denen Präzision zur Tradition geworden ist, konstruiert und gebaut wurde. Die übersichtliche Anordnung der Bedienelemente und die Kompaktbauweise der Drehmaschine ermöglichen Ihnen nach kurzer Übungszeit die Fertigung präziser Werkstücke. Es lohnt sich, einige Probestücke anzufertigen, um dabei gewisse Fertigkeiten in der Bearbeitung zu erlangen.
Übung ist immer ein guter Lehrmeister!
Weiterentwicklungen im Sinne des technischen Fortschrittes behalten wir uns vor. So können geringfügige Abweichungen in den Darstellungen und Beschreibungen entstehen.
Wir wünschen Ihnen jetzt viel Freude bei Ihren Arbeiten!
Inhaltsübersicht:
Seite
Technische Daten 2
Normalzubehör 4
Sonderzubehör 5
Montage und Aulstellung 7
Sicherheitshinweise 8
Maschinenbeschreibung und Bedienungselemente 9
Inbetriebnahme 16
Wartung + Pllege 19
Drehen in der Praxis:
Drehmeisel und Einsatzwerkzeuge 22
Längsdrehen 24
Plandrehen 24
Drehen mit manuellem Vorschub 24
Drehen mit automatischem Vorschub 25
Drehen im Futter 25
Drehen zwischen den Spitzen 26
Kegeldrehen 27
Gewindeschneiden 28
Fräsen 29
Wahl der günstigsten Einstelldaten 30
Diagramme für Einstelldaten 31
Explosionszeichnungen + Stucklisten 35
Ersatzleilbeschaffung
Garantiekarte 49

Technische Daten

Daten allgemein:

65 mm
Spitzenhöhe
Spitzenweite
Drehdurchmesser über Support

Plansupport Verstellweg
Spitzenweite
300 mm
62 mm

Längssupport Verstellweg
Bezifferte Skalen, Teilung
Elektro-Anschluß: Spannung
Nernaufnahme
Nennleistung
80 mm
55 mm
$0,025 \mathrm{~mm} /$ Teilstrich
220 V 50 Hz trur fur Wechselstrom
435 W
250 W
Aufstellilache
$800 \times 280 \mathrm{~mm}$
Gewicht
ca. 45 kg

Technische Ausführung:

Spindelstock:

Drehzahlen an der
Hauptspindel:
Vorschubgetriebe
mit, 2 Vorschuben:
Gewindesteigungen
Spindelkopf mit Futterliansch und Morsekonus MK 2. Spindeldurchlaß 12 mm Ø. Hauptspindellagerung: nachstellbare Präzisionskegelrollenlager.
250, 500, 1000, $2000 \mathrm{U} / \mathrm{min}$
Krattübertragung durch Keilriemen über Stufenscheiben, federgespannt.

Gewndestigungen
$0,16 \mathrm{~mm} / \mathrm{U}$ Schruppen
$0,08 \mathrm{~mm} / \mathrm{U}$ 8chlichten

Reitstock: Werkzeugaufnahme Morsekonus 1. Pinolendurchmesser 22 mm . Pinolenhub 40 mm . Max. Bohrtiefe 35 mm .
Werkstückspannung - im Dreibackenfutter mit Innen- und Außenbacken je nach - zwischen Spilzen
Bearbeitungsart: - mit Spannzangeneinrichtung
Werkzeugspannung: - im Spezial-Stahlhalter

- mit Bohrfutter im Reitslock

Einphasen-Wechselstrom-Motor Typ EAM 63 G 2 - k 12220 У 50 Hz Nennleistung 250 W Nennaufnahme 435 W Drehzahi $2850 \mathrm{U} / \mathrm{mi}$

Funkentslört
mit Fliehkraftschalter und Anlauikondensator 40 uF 320 V
Ein - Aus - Schalter Knebel-Schallvorsatz 22,5 mit 2 Stellungen, und Drehrichtungs- ausgerüstet mit Stößeltaster A $31 \quad 250$ V 10 A umkehr:

Verdrahtungsplan:

Stromlautplan SD 300

Maschine mit Normalzubehör

Abbildung 1

Zur Grundausstattung der Heimwerkerdrehmaschine gehören:
1 Feste Zentrierspitze MK 1
1 Millaufende Zentrierspitze MK 1
1 Satz Wechselräder fur die angegebenen Steigungen (9 Stück)
1 Laufbüchse für Wechselräder
1 Futterschlüssel für Dreibackenfutter
3 Außenbacken für das Dreibackenfutter
1 Bohrfutter MK 1
1 Schutzabdeckung für Dreibackenfutter
1 Maschinenschraubstock MS 50
1 Spannwinkel fúr Fräsarbeiten

Sonderzubehör

Spannzangeneinrichtung

Abbildung 2
Diese Spannzangeneinrichtung zeichnet sich durch hohe Rundlautgenauigkeit aus. Es können Spannzangen für Druckspannung nach DIN 6343 eingesetzt werden. Sie sind lieferbar von $3-12 \mathrm{~mm}(17,5 \times$ R 2, DIN 6343):
Zum Anbau entternen Sie das Dreibackenfutter und setzen die Spanneinrichtung (3) auf die Außenzentrierung. Mit 3 Schrauben und Muttern wird die Spanneinrichtung wie das Futter befestigl.
Zum Einsetzen der Spannzangen (1) schrauben Sie die Druckmutter (2) vollständig ab. Es genügt, das Werkstück durch Rechtsdrehen der Druckmutter zu spanner.
Beachten Sie: Nur die entsprechende Spannzange für den dazu passenden Werkstückdurchmesser benutzen!

Zubehör zum Spitzendrehen

Um mit der Heimwerkerdrehmaschine Werkstücke zwischen Spitzen zu drehen, benötigen Sie:
(1) Feste Zentrierspitze MK 2 (in die Hauptspindel einsetzen)
(2) Millaufende oder feste Zentrierspize MK 1 für Reitstock (Normalzubehör)
(3) Mitnehmerbolzen (in Futterflansch einschrauben)
(4) Sicherheitsdrehherz (Mitnehmerscheiben) für den entsprechenden Drehdurchmesser
Das Umrüsten der Maschine wird später näher beschriében.

Fräseinrichtung (im Lieferumfang enthatten)
Sie benötigen, um Fräsarbeiten durchführen zu können, folgende Zubehörteile:
(1) Spannwinkel
(2) Befestigungsschrauben
(3)-Maschinen-
schraubstock
50 mm Spannweite
Die Maschinenumrüstung und Bearbeitungshinweise sind ebentalls in dieser Anleitung erläutert.

Montage und Aufstellung der Maschine

Thre Drehmaschine ist in Kompaktbauweise ausgeführt. Der Raaderkasten (Teil 9 Antriebsabdeckung) und die Spannzeuge werden lose im Transportbehälter mitgeliefert.
Bereiten Sie zuerst die Aufstelfläche für thre Drehmaschine vor.

Die Aufstellfläche (ein Tisch oder die Werkbank) muß eben, erschülterungsfrei und stabil sein. Schwingungen beeinflussen die Arbeitsgenauigkeit und die Sicherheit! Mit zwei Schrauben $\emptyset 8 \mathrm{~mm}$ verschrauben Sie die Maschine fest auf der Fläche. Prüfen Sie, daß die Fußplatte auf der gesamten Fläche aufliegt.
Der Räderkasten wird von oben aufgestecki und das Schiebescharnier an der Motorplatte mit zwei dafür vorgesehenen Schrauben befestigt. Zum Öfnen wird der Raderkasten nach oben geführt und nach links ausgeschwenkt. Er muß stets geschiossen sein, wenn mit der Maschine gearbeitet wird.
Der Betätigungshebel für die Kupplung (Teil 3) wird in die Gewindebohrung eingeschraubt. Die Bediengriffe der Handräder werden mit einem Maulschlüssel in die Handräder eingeschraubt.
Die Maschine hat eine Anschlußleitung mit einem Schutzkontaktstecker. Achten Sie daraut, daß sich die Kontaktsteckdose, über die der Anschluß erfolgen soll, in Reichweite der Maschine befindet,
Alle Blankteile sind bei Lieferung mit einem Rostschutzfelt konserviert. Dieses Fett bewirkt keine Schmierung der Gleitflachen. Es muß deshalb an allen Blankteilen mit Petroleum abgewaschen werden.
Wichtig: Verwenden Sie dazu kein Waschbenzin, Trichloräthylen, Aceton oder andere Lösungsmittel! Nun müssen alle Blankteile und besonders die Gleifllächen mit säurefreiem Öl und Fett beschmiert werden. Bitte auch Schmierplan (Abb. 15) beachten.

Sicherheits- und Unfallverhütungshinweise

Denken Sie stets daran, daB

- der elektrische Anschluß nur über eine Schutzkontaktsteckdose erfolgen darf, die mit 6 A träge, abgesichert ist,
- bei Wartung und Pflegearbeiten die Maschine abgeschaltet und der Netzstecker gezogen wird,
- Sie eingespannte Werkstücke nur bei abgeschalteter Maschine messen,
- Werkstücke und das Spannfutter nicht mit der Hand abgebremst werden dürfen.
Vermeiden Sie das Überstehen der Spannfutterbacken. Achten Sie auf lose Kleidungsstücke, Krawatten, Hemdsärmel, Schmuck usw. und tragen Sie einen Haarschutz. Schutzvorrichtungen und Abdeckungen gehören während des Arbeitens an die Maschine (nie mit offenem Räderkasten arbeiten). Beim Drehen von sprödem Material (Messing, Grauguß usw.) und beim Werkzeugscharfschleifen tragen Sie bitte einen Augenschutz.
Die Späne sind mit Spănehaken, Pinsel oder Handfeger, niemals mit den Händen zu entfernen.
Der Spannfutterschlüssel muß nach Benutzung und nach Beendigung der Arbeit stets abgezogen werden.
Verlassen Sie nicht unbeaufsichtigt die eingeschaltete Drehmaschine.
Verwenden Sie die Schutzabdeckung bei Bohrarbeiten. Schutzabdeckung mit beiliegenden Befestigungsschrauben am Spindelstock anbringen.

Augenschutz tragen, vor allem bei Kühlmitteleinsatz.

Maschinenbeschreibung und Bedienelemente

13 Elastische Riemenspannung
14 Hauptspindel
15 Räderplatte für Vorschübe und Gewindesteigungen
16 Keilriemenübersetzung
17 Kupplung
18 Wechselräder
19 Keilriemenscheibe, Hauptspindel

Fußplatte

Die verrippte, damit verwindungssteife Fußplatte, nimmt den Spindelstock und die Bettführung auf. In ihr ist der Elektrikteil untergebracht. Damit trägt sie sicher den gesamten Maschinenaufbau.

Bett

Das Bett ist aus bestem Strangguß hergestell. Die Führungstlächen sind geschliffen. Durch seine besondere Ausführung ist das Bett sehr slabil und gibt dem Support und dem Reitstock ausgezeichnete Führungseigenschaften.

Abbildung 7

Kreuzsupport (siehe Abbildung 8)

Der auf dem Bett spielfrei aufgepaBte Kreuzsupport ist aus hochwertigem GrauguB gefertigt. Durch seine langen Führungen gewahrleistet er eine große Genauigkeit und Stabilität. Auf dem Kreuzsupportunterteil wird der Planschieber in einem Schwalbenschwanz geführt. Die Zustellung erfolgt über ein griffgünstiges Handrad, an dem ein verstellbarer Skalenring angebracht ist. Auf dem Planschieber ist der Längsschieber mit Unterteil befestigt. Der Langsschieber wird genau wie der Planschieber gefuhtt und zugestellt. Zum Kegeldrehen ist das Untertell bis 20° schwenkbar gelagert und wird mit 4 Schrauben auf den Planschieber geklemmt. Auf dem Lāngsschieber ist der kräftig dimensionierte Stahlhatter angebracht.

Reitstock (siehe Abbildung 9)
Er ist auf dem Bett verschiebbar angeordnet und kann mit einer kräftigen Innensechskantschraube in jeder Stellung geklemmt werden (bitte hier unbedingt Abb. 16° beachten). Die Reitstockpinole besitzt einen Morsekonus MK 1 und an ihrem Außendurchmesser eine sehr gut ablesbare Skalierung. Die Zustellung der Pinole erfolgt mit dem an der rechten Seite des Reitstockes angebrachten Handrad. Die Pinole kann ebenfalls in jeder Stellung mit der oben aut dem Reitstock befindlichen Innensechskantschraube geklemmt werden. Der Morsekonus wird, indem Sie die Pinole vollsländig in den Reitstock zurücktühren, wieder ausgeworfen.

Spindelstock (siehe Abbildung 10)

In ihm ist die Hauptspindel in 2 nachstellibaren Präzisions-Kegelrolleniagern gelagert. Der Spindeldurchlaß beträgt 12 mm . Im Spindelstock ist der Antriebsmotor eingebaut. Unterhalb der Hauptspindel wird das Bett in einer Bohrung aufgenommen.

Abbildung 9

NROKicn

Elektrische Ausrüstung

Die elektrische Ausrüstung ist in der Fußplatte verschraubt und vor unbeabsichtigem Zugriff geschützt. Die übersichtliche Schalterplatte mit den griffsicheren Drehschaltern fur »Ein« und „Aus« sowie zum Umschalten der Drehrichtung gewährleistet eine sichere Bedienung

Kraftuibertragung

Vom Elektromotor erfolg: die Kraftübertragung mit einem Keilriemen auf ein Vorgelege und von dort auf die Hauptspindel. Das Vorgelege ist federnd gelagert und stell somit eine elastische Riemenspannung, die sich auf alle Bedienungen selbst einstellt, dar.

Abbildung 11

Leitspindel

Sie wird in einer kombinierten Gleit- und Drucklagerung im Spindelstock spieltre geführt und rechts in der Betfführung zusätzlich gelagert. Eine verschleißfeste Bronzemutter, welche im Kreuzsupport eingepreBt ist, setzl die Drehbewegung der Leitspindel in die Länzsbewegung des Kreuzsupportes um. Rechts is auf der Leitspindel das große Handrad mit Skalenting zur manuellen Verstellung des Kreuzsupportes angebracht. Auf dem linken Zapfen der Leitspindel ist ein Zahnrad sowie die Kupplung befestigt, über die bei eingeschalteter Maschine die Vorschubbewegung entssprechend der gewähiten Steigung erfolgt. Die spie reie Einstellung erfolgt über Handrad und Sechskantmutter und ist leicht zugäng. lich.

Abbildung 12

pioncen

Inbetriebnahme

Allgemeines

Überzeugen Sie sich davon, daß

- alle zur Maschine gehörenden Teile sowie das gewünschte Sonderzubehör vollzählig vorhanden sind,
- die Netzspannung und die Frequenz thres Hausanschilusses mit den auf dem Typenschild angegebenen Werten übereinstimmen,
- die benutzte Schutzkontaktsteckdose mit 6 A abgesichert ist.

Führen Sie eine Funklionsprütung durch und machen Sie sich mit den Bedienelementen vertraut.
Mit dem Schaltër 1 wird die Maschine ein- und ausgeschaltet, und der Rechts- und inkslaut der Hauptspindel wird durch den Schalter 2 ermöglicht. Vor dem Umschalten der Drehrichtung muß die Maschine stets ausgeschaltet werden. Mit dem Kupplungshebel 3, den Sie erst durch Anheben nach links schwenken können, werden die Kupplungshälfen bei laufender Maschine zusammengeführt. Damit ist die Vorschubbewegung des Supportes über die Leitspindel eingeschaltet. Schwenken Sie den Kupplungshebel nach rechts, so rastet dieser wieder in seiner Aus-Stellung ein und der Vorschub ist ausgeschaltel.

Drehzahlwechsel

Die Maschine ist auszuschalten und durch Ziehen des Netzsteckers gegen unbeabsichtigtes Einschalten zu sichern. Den Räderkasten heben Sie an und schwenken ihn nach links aus, damit haben Sie Zugang zum Antriebssystem. Die Druckfeder der elastischen Riemenspannung (13) ist durch Linksdrehen der Sechskanimutter zu entlasten. Bitte beachten Sie, daß die Mutter nicht völlig von der Spannspindel gelöst wird! (Abb. 14)
Durch vorsichtiges Anheben der Keilriemenspannung ist es thnen möglich, die Keilfjemen aus der einen in die andere Lage zu bringen. Die Keilriemen können entsprechend den aut dem Bedienschild angegebenen Drehzahlen eingelegt werden. Nach erfolgter Drehzahifestlegung ist durch Rechtsdrehen der Spannmutter die Keilriemenspannung wieder herzustellen, Die Druckfeder darf nie soweit zusammengedrückt werden, dab die Windungen anemander anliegen.

Räderwechsel zur Wahl des Vorschubes und Gewindesteigung

Die Maschine ist auszuschalten, der Netzstecker zu ziehen und der Räderkasten zu oftnen. Durch das Wechsein der Zahnräder kann die Gewindesteigung beslimmt werden. Die Tabelle (Seite 18) zeigt die jeweils notwendige Zahnradkombination. Fur eine Steigung von 2 mm benotigen Sie folgende Zahnrader: Hauptspindel (W) 60 Z, Räderplatte (Z 1) 60 Z, Räderplatte (Z 2) 70 Z, Leitspindel (L) $35 \mathrm{Z}(Z=$ Anzahl der Zähne, aufgeprägt). Es ist hier wie folgt vorzugehen (siehe Abbildung 14):
Die Riemenspannung (13) ist zu lockern und der Keilriemen von der Riemenscheibe (19) zu entfernen. Der Stelling (20) ist durch Lösen des Gewindestiftes abzunehmen, die Keilriemenscheibe (19) und das Wechselrad ($z=30$) von der Welle W abzuziehen.

Die Sechskantschraube (21) wird gelockert und die Räderplatte (15) nach vorn geschwenkt. Nach dem Lösen der Senkschraube (22) können die Endscheibe (23) und das Raderpaar $(z=75, z=20)$ abgezogen werden. Lósen Sie die Sechskantschraube (24) und schwenken das Kupplungsteil (25) nach vorn, können nacheinander die Kupplung (17) und das Wechselrad ($z-100$) von der Leitspindel (L) entfernt werden. Das Wechselrad ist mit einem Sprengring befestigt, der durch leichten Druck mit dem Schraubenzieher abzuziehen ist:

Der Zusammenbau in umgekehrter Reihenfolge beginnt mit dem Aufstecken des Wechselrades ($z-35$) auf die Leitspindel (L) und Sichern durch den Sprengring, Aufstecken der Kupplung (17) und Befestigen des Kupplungsteiles (25) durch Festziehen der Schraube (24). Bei ausgeschalteter Kupplung muß zwischen den treiliegenden Klauen ein Langsspiel von min. 1 mm sein!

Das Räderpaar $z-70\left(z_{2}\right)$ und $z=60\left(z_{1}\right)$ ist auf dem Laufbolzen in der Räderplatte (15) aufzustecken. Dazu ist die Laufbuchse (aus dem Zubehör) mit den beiden Rädern so zu bestücken, daß der Bund der Wechselräder jeweils zum Bund der Laufbuchse zeigt. Die Laufbuchse ist mit dem Bund nach rechts (Bund dient als Anschlag) aufzustecken und mit der Endscheibe (23) und Schraube (22) wieder zu sichern. Zuvor müssen Sie den Laufbolzen lockern und im Langloch soweit verschieben, bis das aufgesteckte Zahnrad mit dem Zahnrad auf der Leitspindel in Eingrift gebracht ist. Dann wird der Lautbolzen durch Rechtsdrehen mit dem Schraubenschlüssel wieder lestgelegt.

Auf die Welle (W) wird das Wechselrad ($z=60$) aufgesteckt, die Keilnemenscheibe (19) und der Stelling (20) angebracht. Anschließend ist die Räderplatte (15) zurückzuschwenken und mit der Schraube (21) festzustellen. Dabei ist zu beachten, daß zwischen den Rädern ein gewisses Spiel bleiben muß, um einen leichten und geräuscharmen Gang der Wechselräder zu garantieren. Das können Sie ganz einfach gewährleisten, indem ein Papierstreiten beim Einschwenken der Räderplatte zwischen die ineinandergreifenden Zähne gelegt wird. Seine Dicke entspricht dem erforderlichen Spiel, welches zwischen den Zähnen vorhanden sein muß, damit ein ordentliches Kämmen der Räder erfolgt. Zuletzt wird der Keilriemen wieder aufgelegt und wie beschrieben gespannt.

Abbildung 14

Bedienschild SD 300

Proxesen

(A) jewells vor inbetriebnolime
(B) wichentich
(C) jabrliah

- Felt
(क) 0

Justiexaxbeiten an den Hauptgruppen

Trotz bester Präzision bei der Ferligung der Heimwerkerdrehmaschine wird nach längerer Lautzeit ein nicht zulässiges Lagerspiel auftreten. Sie können die Arbeitsgenauigkeit ihrer Maschine wie nachstehend beschrieben selbst wieder herstellen:

Hauptspindel

Die Nachstellung zum Verringern des Spieles erfolgt mit den Stellmuttern an der Antriebsseite. Hintere Mutter durch Linksdrehen losen. Vordere Stellmutter entsprechend nachstellen. Beide Muttern fest kontern. Die Spindel muB immer relativ leichtgängig sein! Die Maschine muß stets bei der Drehzahl 2000 U/min einwandfrei anlaufen, sonst sind die Lager zu fest eingestellt! In diesem Falle Muttern nochmals lösen, auf die Spindel mit Holz leicht in Richtung Reitstock klopfen und neu einstellen. (Nie Stahihammer verwenden!) Ein erforderlicher Ausbau der Hauptspindel ist unter "Schmierung der Hauptspindel" beschrieben.

Plan- und Längssupport

Die Schieberführungen können durch Lösen der Sechskantmuttern 1 und Nachstellen der Gewindestitte 2 mit Schraubenzieher nachgestell werden. Dabei stets darauf achten, daß keine Späne eingeklemmt und die Führungsbahnen sauber sind.

Handräder zur Anstellung der Supporte

Sollte sich ein größeres Spiel als 2 Teilstriche eingestellt haben, können Sie wie folgt nachjustieren:
Kontermutter 3 mit Maulschlüssel Iösen
Handrad 4 durch Rechtsdrehen nachstellen
Mutter mit Maulschlüssel kontern, dabei Handrad fest gegen spannen.

Leichtgängigkeit von Support und Reitstock

Support und Reitstock haben Klemmschrauben 5 und Abdrückschrauben 6. Die Abdrückschraube 6 ist zu lösen. Durch vorsichtiges Anziehen der Klemmschrauben 5 mit einem Schlussel für Innensechskant wird die entsprechende Baugruppe auf dem Bett festgeklemmt. Bei schwergängigem Lauf kann durch leichtes Anziehen der Abdrückschraube bei gelösten Klemmscheiben das Spiel vergrößert werden.
Vorsicht! - Ein zu leichtgängiger Support beeinträchtigl die Arbeitsgenauigkeit erheblich.

Bearbeitungshinweise

Für die vieltältigen Arbeitsverfahren emplehlen wir nachstehend erläuterte Werkzeuge:

Drehmeißel

SchruppmeiBel: wird verwendet, wenn in kurzer Zeit ein großer Span abgetragen werden soll.
SchlichtmeiBel: erzielt
(SpitzmeiBel):
SeitenmeiBel: werden zum Längs- und Plandrehen und zum Ausdrehen von
(rechts - links) scharfen Winkeln in rechter und linker Bearbeitungsrichtung verwendet.
Abstechmeißel: wird zum Einstechen von Nuten und zum Abtrennen von Werkstücken verwendet. Es ist beim Abstechen zu beachten:

- die exakłe Spitzenhöhe des MeiBels
- niedrige Drehzatl
- Kühlung des Werkzeuges

Gewindemeißel: Zum Außengewindeschneiden, Anschliff entsprechend der Gewindeform
Spiratbohrer:
Abbildung 18

Zentrierbohrer:
-

Abbildung 21
E+ है3
Einspannen der DrehmeiBel und Schneidewinkel
Abbildung 22

Die Schneide des Drehmeißels muß genau in der Höhe der Zentrierspitze liegen. Liegt die Meißelschneide zu niedrig, dann müssen Metallplättchen unterlegt werden.
Grundsatz: Den Drehmeißel kurz einspannen. Langes Überstehen führt zu Schwingungen und Ungenauigkeiten.

arexiey

Drehen allgemein

Längsdrehen

Der DrehmeiBel wird parallel zur Drehachse bewegt. Der Vorschub erfolgt durch Drehen des Lángssupporthandrades oder des Leitspindelhandrades. Die Spantiefe wird mit dem Plansupport zugestellt.

Abbildung 24

Plandrehen

Der DrehmeiBel wird rechtwinklig zur Drehachse bewegt, Es können sowohl die Stirnseite des Werkstückes als auch Einstiche und Rillen auf dem Außendurchmesser bearbeitet werden. Der Vorschub erfolgt durch Drehen des Plansupporthandrades. Die Spantiefe wird mit dem Längssupport zugestelit.

Drehen manuell

Durch Betâtigen der Handräder am Kreuzsupport (Längs und Plan) oder an der Leitspindel konnen alle Dreharbeiten von Hand (außer Gewindeschneiden) erfolgen.

Drehen mit automatischem Vorschub

Beim Drehen mit dem automatischen Vorschub erhält man eine gleichmäßige Oberfläche. Zur Verfügung stehen zwei Vorschübe:
$0,08 \mathrm{~mm} / \mathrm{U}$ (geeignet zum Schlichten) und
$0,16 \mathrm{~mm} / \mathrm{U}$ (geeignet zum Schruppen)
Die Einstellung der Vorschübe erfoigt durch Wechselräderkombinationen entsprechend der Tabelle am Bedienschild. Zum Einschallen des automatischen Vorschubes wird bei laufender Maschine der Kupplungsschalthebel angehoben und nach links bewegt in "Aus-Stellung" ist der Hebel arretiert und ein unbeabsichtigtes Einschalten des automatischen Vorschubes ist unmöglich.

Drehen im Futter

Das Dreibackenfutter ist zum Drehen das gebräuchlichste Spannzeug.
Abbildung 26

Werden lange Werkstücke bearbeitet, wird eine Zentrierspitze in der Reitstockpinole als Gegenlager verwendet. Dazu ist stirnseitig am Werkstück eine Zentrerbohrung anzubringen (siehe Abbildung 27).
Werkstücke, die über den Spindelstock hinausragen, sind vor Abknicken zu sichern. (Untallgefahrl)

Drehen zwischen Spitzen (siehe Abbildung 3)
Werkstücke, von denen eine hohe Rundlaufgenauigkeit gefordert wird, werden zwischen zwei Spitzen bearbeitet. Zur Aufnahme wird in beide plangedrehten Stirnseiten je eine Zentrierbohrung gebohrt, deren Tiefe sich nach der Größe des Werkstückes richtet. In den Sicherheitsmitnehmer, welcher auf das Werkstück auggespannt ist, greitt der im Futterllansch eingeschraubte Mitnehmerbolzen ein Die feste Zentrierspitze im Reitstock gleitet in der Zentrierbohrung des Werkstückes. Diese Stelle solle gut geschmiert werden.
Mit folgenden Handgriffen ist die Maschine auf das Drehen zwischen Spitzen umzurüsten:
a) Entfernen des VerschluBringes durch Lösen des Gewindestiftes M 3
b) Entfernen des Drehfutters durch Lösen der 3 Sechskantmuttern M 6
c) Einsetzen der festen Zentrierspitze MK 1 in die Hauptspindel. Bitte den Konus und die Spitze gut reinigen.
d) Einstecken des Mitnehmerbolzens in eine der 6 Befestigungsbohrungen des Futterflansches und verschrauben mit einer Mutter M 6
e) Aufspannen des Sicherheitsmitnehmers auf das Werkstück
f) Einsetzen der Zentrierspitze MK 1 in die Pinole des Reitstockes. Es ist ebenfalls auf Sauberkeit des Konus und der Zentrierspitze zu achten.
g) Werkstück mit dem aufgespannten Sicherheitsmit nehmer in die vorher eingebrachten Zentrierbohrungen zwischen beiden Zentrierspitzen aufnehmen. Das Spannen erfolgl durch Pinolenbewegung in Richtung Spindelstock. Bitte achten Sie darauf, daß vorher der Reitstock auf dem Maschinenbett festgestellt wurde. Nachdem das Werkstück drehbar zwischen den beiden Spizen gespannt ist, klemmen Sie die Reitstockpinole fest.
h) Danach kann die Bearbeitung des Werkstückes erfolgen.
i) Beim Wiederanbringen des Dreibackenfutters ist daraut zu achten, daß die Steckschtüsselaufnahme mit der 0-Markierung am Futterflansch übereinstimmt.

Kegeldrehen

Zum Kegeldrehen wird der Längsschieber auf dem schwenkbaren Supportunterteil, an dem die Winkelteilung angebracht ist, aut den gewünschten Kegelwinkel eingestelt. Mit den vier Klemmschrauben wird das Unterteil nach dem Einstellen des Winkels wieder festgestell. Der Vorschub erfolgt, indern das kleine Handrad durch Längsschieben betätigt wird.
Bei Drehwinkeln über 40° sind je 2 der gegenüberliegenden Klemmschrauben zu entternen.

Bohren (siehe Abbildung 29)

Die Werkstückspannung erfolgt im Dreibackenfutter. Der Bohrer wird im Bohrfutter gespannt. Die Reitstockpinole nimmt das Bohrfutter mit Kegeldorn aut. Der Vorschub erfolgt manuell durch Drehen des Handrades am Reitstock. Sie können auch Spiralbohrer mit Morsekonus MK 1 in die Reitstockpinole einselzen.

Gewindeschneiden mit Drehmeißel

Der Gewinde-Außendurchmesser des Werkstückes muB fertig bearbeilet sein. Zum Gewindeschneiden sind folgende Arbeitsgänge notwendig:
a) Aufstecken der gewünschten Wechselradkombination entsprechend der

Steigung (siehe Seite 18)
b) Werkstück spannen
c) Werkzeug spannen (GewindedrehmeiBel : Werkzeugwinkel sind entsprechend der gewünschten Gewindeform zu wählen)
d) Werkzeug in Anfangsstellung bringen
e) Maschine einschalten (Rechtslauf)
f) Drehmeißel mittels Plansupport zustellen, Vorschub einkuppeln
g) Nach Erreichen der Gewindelänge ist die Maschine sofort auszuschalten (Gewinderille muß vorhanden sein). Kupplung bleibt bis zur Fertigstellung des Gewindes immer im Eingrif!
h) Werkzeug vom Werkstück zurückfahren
i) Drehrichtung umschalten
i) Maschine einschalten und Support in Ausgangsstellung zurückfahren lassen
k) Werkzeug zustellen

Diese Arbeitsgänge wiederholen sich von d) bis k), bis die gewünschte Gewindetiefe erreicht ist.

1) Hinweis:

Damit Sie ein qualitätsgerechtes Gewinde schneiden können, gehen Sie bitte folgendermaBen vor:
Die Zustellung des Gewindestahles erfolgt wie unter k) genannt mit dem Plansupport. Der Längssupport wird dabei von Span zu Span einmal nach links und einmal nach rechis gering um 0,02 bis $0,03 \mathrm{~mm}$ verstelt. Erst vor Erreichen der Gewindetiefe durch geringes Zustellen mittig voll einschneiden.

Fräsen mit Fräseinrichtung

Mit dieser Fräseinrichtung können Sie Thre Drehmaschine durun Umrüstung in eine kleine Fräsmaschine verwandeln. Dazu sind folgende Arbeitsgänge not wendig:
a) Stahlhalter durch Lösen von zwei Schrauben vom Längssupport abbaven Gewindestift (M 8) aus Längssupport entfemen
b) Längssupport durch Lösen der Schrauben vom Plansupport demontieren
c) Aufschrauben des Spannwinkels (1) auf den Planschieber durch vier

Schrauben (M 5)
d) Der Längssupport (4) wird durch Sechskantschrauben am Spannwinkel befestigt
e) Schraubstock (3) auf Längssupport in gewünschter Stellung aufschrauben Durch die Vervendung des kompletten Längssupportes ist ein Schwenken nach zwei Richtungen möglich. Diese Fräseeinnichtung ermöglicht ein dreidimensionales Bearbeiten von Werkstücken.

Wahl der günstigsten Einstelldaten

Zur Bestimmung der günstigsten Einstelldaten, wie Drehzahl, Vorschub und Spantiefe, für die entsprechende Arbeilsverrichtung, haben wir thnen die nachfolgend autgefuhtten Diagramme erarbeitet. Die Diagrammwerte gelten fur Dauerbetrieb mit scharf geschliffenem Werkzeug. Wählen Sie zunächst die fur ihren Werkstoff und Drehdurchmesser zutreffende Drehzahl aus. Es ist stets die Drehzahl aus dem Diagramm zu venwenden, die dem Schnittpunkt aus Durchmesser und Werkstoff am nächsten liegt. Haben Sie einige Eftahrung gesammelt, werden Sie Feindreharbeiten bei entsprechendem Meißelanschliff mit einer höheren Drehzahl durchführen. Sonst gilt die Faustregel: Niedrigere Drehzahl gewährleistet ein über längere Zeit scharfes Werkzeug.
Für die Wahi der Spantiefe entsprechend der Maschinenleistung haben Sie drei Diagramme zur Verfügung:

* zur Bearbeitung von Stahl und Grauguß Kupferlegierungen
- zur Bearbeitung von Messing und anderen Kuplerlegierungen

Die Spantiefen sind auf die zur Verfugung stehenden Vorschübe abgestimmt:
Schruppen
$0,16 \mathrm{~mm} / \mathrm{U}$
(Strichlinie)
Schlichten
$0,08 \mathrm{~mm} / \mathrm{u}$
(Vollinie)

Der jeweils erforderliche Räderwechsel ist unter "Maschinenbeschreibung" erklärt.
Beachten Sie bitte, daß diese Präzisionsdrehmaschine nicht für grobe Schrupparbeiten, wie unterbrochene Schnitte usw., konzipiert ist. Die Präzision lhrer Maschine leidet unter jeder mechanischen Überbeanspruchung. Bei evti. rutschendem Keilriemen sofort abschalten und Zustellung verringern!
proxicioy

Diagramme für die Zerspanungsleistung

Diagramm 1

Bearbeitung von Staht bis St 42 und Grauguß Schneidwerkstoff: SS/HSS
bei Grauguß können die Spantiefen $\times 1,25$ vergrößert werden

Werkstück-bzw. Werkzeugdurchmesser $\rightarrow[\mathrm{mm}]$

Beispiele:

Beispiel 1: Es soll eine Welle, Durchmesser 60 mm , Stahl St 34, geschruppt werden.

Sie gehen folgendermaßen vor:
1.1. Im Diagramm "Drehzahlen" entnehmen Sie: "Werkstückdurchmesser 60 mm ", gehen Sie nach oben zur Voll tinie "Stahl", weiter nach links und lesen ab: "Spindeldrehzahi $250 \mathrm{U} / \mathrm{min}^{\prime}$
1.2. Im Diagramm 1 gehen Sie waagerecht bei "Werkstückdurchmesser 60 mm " bis zur Strichlinie (Schruppen) " $n=250 \mathrm{U} / \mathrm{min}^{"}$ und lesen unten ab:
"Spantiefe $0,6 \mathrm{~mm}$ " (- Zustellung des Werkzeuges)
In weiteren Beispielen ist analog zu verfahren:

Beispiel 2: Es soll ein Messing-Drehteil, Durchmesser 25 mm , vorgedreht werden. Vorschub $0,16 \mathrm{~mm}$:
2.1. Im Diagramm "Drehzahlen", Drehdurchmesser 25 mm , ergibt be "Messing" den Schnittpunkt $n-1150$ U/min; gewăhit wird $\mathrm{n}-1000 \mathrm{U} / \mathrm{min}$
2.2. Im Diagramm 2 lesen Sie ab:

Bei Durchmesser 25 mm ergibt sich der Schnittpunkt bei n -1000 : Spantiefe $\mathrm{a}-0,95 \mathrm{~mm}$
Beispiel 3: Es soll ein Drehteil aus Aluminium, 60 mm Durchmesser, geschlichtet werden (Vorschub $0,08 \mathrm{~mm} / \mathrm{U}$)
3.1. Drehzaht:

Im Diagramm ergibt der Durchmesser 60 mm bei Aluminium die Drehzahl $n-980 \mathrm{U} / \mathrm{min}$; gewählt wird $n-1000 \mathrm{U} / \mathrm{min}$
3.2. Im Diagramm lesen Sie ab;

Bei Durchmesser 60 mm ist der Schnittpunkt bei der Voli-Linie bei $n=1000 \mathrm{U} / \mathrm{min}$ Spantiefe a -1.2 mm

Explosionszeichnungen + Stücklisten

01 Baugruppe Spindelstock
02 Baugruppe Bett
03 Baugruppe Reitstock
04 Baugruppe Planschieber
05 Baugruppe Längsschieber
06 Baugruppe Motor-Antrieb
07 Baugruppe Elektro-Ausrüstung
08 Baugruppe Räderplatte-Wechselräder

Wichtig:

Wir behalten uns vor, gewisse Bau-Untergruppen nur komplett auszuliefern.
Dies auch dann, wenn nur ein Ersatzteil bestelit wird.

proxkeny

01. Baugruppe Spindelstock

(Die letzle Ziffer der ET-Nr, entspricht der Zaht an der Abbildung)

ET-Nr.	Bezeichinung	Stuck
24500100	Spindelstock, komplett	1
2450-0101	Spindelstockkörper	1
2450-0102	Hauptspindel	1
2450-0103	Futterflansch	1
2450-0104	Verschlußring	1
2450-0105	Lagerdeckel	1
$2450-0106$	Lagerdeckel	1
$2450-0107$	Stellmutter	2
24500108	Wechselrad	1
2450-0109	Riemenscheibe	1
2450-0110	Leitspindellager	1
2450-0111	Lüftungskappe	1
2450-0112	Bedienschild	1
2450-0116	Kegelrolienlager	1
2450.0117	Paßscheibe	2
2450-0118	Sicherungsring	2
2450-0119	Kegelrollenlager	1
2450-0120	Stellring A 20	1
2450-0121	Zylinderschraube M 8×55	2
2450-0122	Zylinderschraube M 8×35	1
2450-0123	Zylinderschraube M5×22	3
2450-0124	Zylinderschraube M 5×15	3
2450-0125	Zylinderschraube M 4×8	3
2450-0126	Kegelkerbstift 5×20	1
2450-0127	Zylinderkerbstift 4×15	1
2450-0128	Halbrundkerbnagel 3×8	4
2450-0129	Gewindestift M 3×6	1
$2450-0130$	Gewindestift M 6×8	1
2450-0131	Scheibe 4,3	3
$2450-0132$	Paßteder A $4 \times 4 \times 36$	1
2450-0140	3-Backen-Drehfutter, 80 mm	1

02. Baugruppe Bett, Fußplatte und Leitspindel

(Die letzle Ziffer der ET-Nr, entspricht der Zahl an der Abbildung)

ET.Ne.	Bezeichnung		Stuck
2450-0201	Fußplatte		1
2450-0202	Leitspindel		1
2450-0203	Spindelplatte		1
2450-0204	Spindelführung		1
2450-0205	Skalenring		1
2450-0206	Handrad		1
2450-0207	Handgriff		1
2450-0208	Axialbuichse		1
2450-0209	Kupplung		1
2450-0210	Wechselrad		1
2450-0211	Kupplung		1
2450-0212	Spindelschutz		1
2450-0213	Bett		1
2450-0214	Stift		1
2450-0215			
2450-0216			
2450-0217			
2450-0218	Zylinderschraube	M 8×55	4
2450-0219	Zylinderschraube	M 8×20	2
2450-0220	Zylinderschraube	M 8×20	1
2450-0221	Zylinderschraube	BM 4×22	4
2450-0222	Gewindestift	M 4×6	1
2450-0223	Gewindestift	M 4×12	1
2450-0224	Federring A 12		1
2450-0225	Sechskantmutter	BM 12	1
2450-0226	Sechskantmutter	M 4	4
2450-0227	Steckkerbstift	M 4×16	2
2450-0228	Kegelkerbstift	3×18	1
2450-0229	Pabfeder	A $4 \times 4 \times 8$	1
2450-0230	Pabfeder	A $4 \times 4 \times 18$	1
2450-0231	Sprengring	20×2	1
2450-0232	Sprengring	12×1	1
2450-0233	Axialrillenkugellager	51102	1

03. Baugruppe Reitstock

(Die letzte Ziffer der ET-Nr, entspricht der Zahl an der Abbildung)

ET-N\%	Bezeichnung		Stuck
2450-0301	Reitstockkórper		1
2450-0302	Pinole		1
2450-0303	Spindel		1
2450-0304	Spindelführung		1
2450-0305	Skalenring		1
2450-0306	Handrad		1
2450-0307	Handgriff		1
2450-0308	Reitslock komplell		
2450-0309			
2450-0310			
2450-0311	Zylinderschraube	M 8×25	1
2450-0312	Zylinderschraube	M 8×35	1
2450-0313	Zylinderschraube	M 8×14	1
2450-0314	Kegelkerbstift	5×20	1
2450-0315	Zylinderschraube	M 4×14	4
2450-0316	Gewindestift	M 4×6	1
$2450-0317$	Gewindestift	M 4×12	1
2450-0318	Federring A 8		1
2450-0319	Sechskantmutter	BM 8	1

04. Baugruppe Planschieber

(Die letzte Ziller der ET-Nr, entspricht der Zahl an der Abbildung)

ETNA.	Bezeichnung		Stuck
2450-0400	Planschieber, komplett		1
2450-0401	Unterteil		1
2450-0402	Spindeimutter	M 18×1	1
2450-0403	Schulzrohr		1
2450.0404	Planschieber		1
2450-0405	Leiste		1
2450-0406	Spindelführungsplatte		1
2450-0407	Spindelmutter	M 6	1
2450-0408	Spindel	M 6	1
2450-0409	Spindelführung		1
2450-0410	Skalenring		1
2450-0411	Handrad		1
2450-0412	Handgriff		1
2450-0413			
2450-0414			
$2450-0415$			
2450-0416	Zylinderschraube	M 8×35	2
2450-0417	Zylinderschraube	M 8×25	1
2450-0418	Zylinderschraube	M 4×10	2
$2450-0419$	Gewindestift	M 5×12	3
2450-0420	Gewindestitt	M 3×2	1
2450-0421	Gewindestift	M 4×16	6
2450-0422	Gewindestift	M 4×6	1
2450-0423	Gewindestift	M 4×12	1
2450-0424	Kegelkerbstilt	5×20	1
2450-0425	Paßkerbstift	3×12	1
2450-0426	Sechskantmutter	BM 4	6
2450-0427	Sechskantmutter	BM 8	1
2450-0428	Scheibe 8,4		1

5. Baugruppe Längsschieber
(Die letzte Ziffer der ET-Nr. entspricht der Zahl an der Abbildung)

Et-Nr.	日ezeichinung	Stück
2450-0500	Längsschieber, komplett	1
2450-0501	Langsschieber, (nur Platle)	1
2450-0502	Unterteil	1
2450-0503	Stahihatter, kompl.	1
2450-0504	Leiste	1
2450-0505	Spindelführungsplatte	1
2450-0506	Spindelmutter	1
2450-0507	Spindel M 6	1
2450-0508	Spindeltührung	1
2450-0509	Skalenring	1
$2450-0510$	Handrad	1
2450-0511	Zylinderstift $6 \mathrm{~m} 6 \times 36$	2
2450-0512	Längsschieber, kompeltt montiert	
2450-0513		
2450-0514		
2450-0515	Zylinderschraube M 8×20	2
2450-0516	Zylinderschraube M 5×16	8
2450-0517	Zylinderschraube M5×16	4
2450-0518	Zylinderschraube M 4×14	2
$2450-0519$	Zylinderschraube M 4×10	2
2450-0520	Gewindestif M 8×8	1
2450-0521	Gewindestift M 4×16	6
2450-0522	Gewindestitt M 3×6	1
2450-0523	Gewindestitt M 4×6	1
2450-0524	Gewindestitt 4×12	1
2450-0525	Scheibe 5,3	4
2450-0526	Scheibe 8,4	1
2450-0527	Sechskantmutter BM 8	1
2450-0528	Sechskantmutter BM 4	6
2450-0529	Pabkerbstift 3×12	1

ROMyON

06. Baugruppe Motor + Antrieb

Effict	Berechinung	Sluck
2450-0600	Baugruppe Motoreinheit	1
2450-0601	Motor EAM 63 G 2 - AK 12	1
2450-0602	Zwischenplatte	1
2450-0603	Motorplatte	1
2450-0604	Keilriemenscheibe	1
2450-0605	Keilriemenübersetzung	1
2450-0606	HulseSpannwinkel	1
2450-0607		1
2450-0608		
2450-0609		
2450-0610		
2450-0611	Keilriemen 8×425	1
2450-0612	Keilriemen 8×375	1
2450-0613	Senkschraube M 4×8	1
2450-0614	Sechskantschraube M 10×60	1
2450-0615	Zylinderschraube $\quad \mathrm{BM} 6 \times 50$	1
2450-0616	Zylinderschraube M 5 $\times 16$	2
2450-0617	Zylinderschraube M 5 22	8
2450-0618	Endscheibe A 4.3×20	1
2450-0619	Scheibe 5,3	2
2450-0620	Scheibe 5,3	4
2450-0621	Pabteder $5 \times$	1
2450-0622	Federring B 10	1
2450-0623	Sechskantmutter M 5	4
2450-0624	Sechskantmutter M 6	1

07. Baugruppe Elektro-Ausrüstung

ET-N.	Bezeichinung Stick	
$2450-0707$	Schalter Ein/Aus	1
2450-0708	Schalter rechts/links	
2450-0709	Schalterplatte incl. Schrauben	1
$2450-0710$	Fliehkraftschatter	
2450-0704	Kondensator	1
2450-0705	Abdeckplatte unten, incl. Schrauben und	
	Klemmen + Zugentlastung	1
2450-0706	Netzanschiuß ind. Stecker	1

Vo. saugxuppe skacerpiatte
(Die letzle Ziffer der" Nr entspricht der Zaht an der Abbildung)

ET-NT	Bezeichiouna		Stack
2450-0801	Faderplatte		1
2450-0802	Radbolzen		1
2450-0803	Zahnrad		1
2450-0804	Laufbuchse		1
2450.0805	Zahnrad		\dagger
2450-0806	Lauftuchse		1
2450-0807	Satz Wechselrader	ges.	9
2450-0808	Bolzen		1
2450.0809	Schalstange		1
245000810	Raderkaslen		1
$2450-0811$	Stehbolzen vollst.		1
$\begin{array}{r} 2450-0812 \\ 2450-0813 \end{array}$			
$2450-0814$			
$2450-0815$	Senkschraube	M 4×8	1
2450-0816	Endscheibe	A $4,3 \times 25$	1
$2450-0817$	Palfeder	B $4 \times 4 \times 8$	1
2450-0818	Zylinderkerbstitl	2×4	1
$2450-0819$	Sechiskantmutler	B M 8	1
2450-0820	Scheibe 8,4		1
2450.0821	Sechskanlschraube	M 8×30	1
2450-0822	Sechskantschraube	M 6×10	1
2450.0823	Kugelgrift	B 20 schwar	1
2450-0824	Zyinderstit	$5 \mathrm{~m} 6 \times 20$	1
2450-0825	Zyinderstill	$4 \mathrm{~m} 6 \times 15$	2
2450-0826	Pabtecter	B4.4×20	1
2450-0827	Kegelkerostif	2×5	1

Sehr geehrter Kunde!
Wir wären Ihnen sehr zu Dank verbunden, wenn Sie uns die folgenden Fragen beantworten würden (einfach ankreuzen):
Für welchen Zweck haben Sie die Drehmaschine SD 300 gekauft?
\square Zum Modellbau
\square Zur eigenen technischen Weiterbildung zu Hause
\square Zur technischen Ausbildung meiner Kinder, Neffen etc.
\square Zur technischen Bildung im Unterricht
\square Zur gewerblichen Nutzung (Branche:
\square Sonstiges:
Welche Materialien sollen primär bearbeitet werden
\square Stahil
\square NE-Metalle (Messing, Aluminium)
\square Kunststoffe
\square Holz
Natürlich können auch mehrere Punkte gleichzeitig angekreuzt werden.
Herzlichen Dank!
Ihre PROXXON

